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Abstract .  The propagation of an electromagnetic wave in a time stationary tur- 
bulent and nonlinear plasma is studied with a view to ascertaining the statistical 
moments of the wavefield. We find that the functional method which w a s  used 
by Hopf in his study of ordinary turbulence is a powerful one also for turbulent 
and nonlinear media. A functional differential equation is derived for the moments 
of electromagnetic waves propagating in an isotropic plasma in which the dielec- 
tric constant undergoes statistical fluctuations. Using the Markov and small-angle 
forward-scattering approximations, we find a hierarchy of coupled partial differentid 
equations for the moments containing different wave numbers. An approximate per- 
turbation method is devised for decoupling and solving the hierarchy to any desired 
order. We draw attention to the similarity of the closure problem of the moment 
equations to that in turbulence generally and in statistical mechanics. Possible a p  
plications are discussed. 

1. Introduction 

Electromagnetic wave propagation in miscellaneous random media has attracted much 
attention [2-151. This is due not only to the possible practical benefits but also to the 
scientific richness and value of this problem. There have been several studies of wave 
propagation in nonlinear media containing random inhomogeneities [12-151. For a lin- 
ear medium containing random inhomogeneities, the effects of inhomogeneities can be 
taken into account formally up to an arbitrary order of accuracy by various methods. 
These include the geometrical optics method [3], the method of smoothing pertur- 
bation [2-51, the renormalisation-diagram technique [6] and the method of successive 
scatters [5-71. Fluctuations in the electromagnetic wave are seen as resulting from 
interference between randomly modulated wavefields caused by random fluctuations 
in the medium. In a nonlinear turbulent plasma random inhomogeneities and random 
electromagnetic characteristics are produced by the turbulent fluctuations. The  non- 
linear response of the turbulent plasma must,  therefore, be taken into account, and 
this makes the problem considerably more complicated. Phenomena requiring this 
fuller treatment include self-induced transparency, self-focusing, self-modulation and 
the generation and collapse of solitary waves [16-181. 

In studies of wave propagation in turbulent and nonlinear plasmas, the statisti- 
cal characteristics of the wave are often needed. In order to  obtain these we begin 
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by defining the moments of the electromagnetic wavefield and the characteristics of 
their statistical properties. The electric field of a high frequency monochromatic elec- 
tromagnetic wave propagating in a turbulent and nonlinear plasma can be expressed 
as 

E = Ek.w exp[-i(wt - Icr)]. (1) 

If we assume that the characteristic scale length of the inhomogeneities in the 
medium is much larger than the wavelength, and the inhomogeneities are weak, the 
scattering produced by the inhomogeneities will always be a t  a small angle t o  the 
direction of propagation [ 2 ] .  Under this small-angle approximation, we can use a scalar 
wave equation to  describe the propagation. We will also assume that  the process is a 
Markov process, as been found in many experiments [3]. Under these conditions, the 
m-nth moment of the wavefield is the correlation function of the wavefield, which can 
be defined by 

I m  n \ 

where T and T’ are the radius vectors, (.) denotes ensemble average, j and 1 are 
integers. 

When the characteristics of the turbulent plasma are time invariant, the m-nth 
moment of the field is [19] 

m n 

x n dwjdkj n dwjdk;. 

For the plasma t o  be time invariant, the coefficient o f t  must be zero, i.e. 

m n xuj - c w ;  = 0 

(3) 

(4) 

The old method [15]  of deriving the equations of the moment of the wavefield, is 
to  multiply the wave equation by the wavefield and its conjugates, and then take the 
average. In order to  treat the average terms containing fluctuating physical quantities 
as well as the wavefield, i t  is necessary to  assume that  the fluctuating physical quantity 
has a Gaussian distribution and then use the Donsker-Frutsu-Novikov formula [2-5,  
151. However, random fluctuations of physical quantities in a turbulent plasma are 
not necessarily Gaussian. For dealing with the general case, therefore, we shall adopt 
a different approach-that of the characteristic functional method initiated by Hopf 
to  study turbulence in fluids [l]. 
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In section 2 we shall derive the functional differential equation and hierachy of cou- 
pled partial differential equations for moments of the wavefield with different wavenum- 
bers in an isotropic, time-stationary plasma wit,h random inhomogeneities and weak 
nonlinearity. In section 3, we shall use a perturbation method to  obtain an approx- 
imate solution when the nonlinearity is cubic. In last section we discuss a closure 
problem encountered in section 3,  and the significance and possible applications of 
our results. 

2. The hierarchy of coupled partial differential equations of wave moments 
in a turbulent and nonlinear plasma 

We mentioned in the previous section that a scalar equation is adequate for describing 
the propagation of high frequency electromagnetic waves in a turbulent and nonlinear 
plasma. We now derive the equations for the moments of the wavefield. The hierarchy 
of coupled partial differential equations for a single wavenumber in a random medium 
with Gaussian statistical characteristics in addition to  cubic nonlinearity were derived 
by using the method of averaging [15]. However, as we have seen, a wave propagating 
in a turbulent and nonlinear plasma becomes modulated and develops a finite range 
of wavenumbers. Neither are the statistical characteristics of turbulent media neces- 
sarily Gaussian. We shall need therefore, to use a different approach, in which the 
functional method is employed to  derive the complete set of the moment equations 
for the wavefield with different position and different wavenumbers. No prescriptive 
limitation is imposed on the statistical characteristics. 

2.1. The stochastic nonlinear partial differential equation for the wave 

When a high frequency electromagnetic wave is propagating in a turbulent plasma, the 
electric field of the wave obeys the following stochastic nonlinear partial differential 
equation [7] 

where T is the three-dimensional radius vector, w the wave angular frequency, and c 
the relative permitivity. We shall consider c to be composed of a mean value,co; the 
local deviation averaged over the characteristic scale length of the fluctuations, c lco ;  
the local irregularity,rzco and a nonlinear component c3co where 

P ( W )  = ( W / c ) % o ( W )  

(7) 
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Figure 1. Sketch of the linear components as a function of z ,  of the relative per- 
meability of a turbulent and nonlinear plasma. €0, €1 and € 2  are average, spatial 
deviation and random part of the linear components of relative permeability. 

t- 
- 

- 3 0 . 5 -  
w 

? 

- 

0 0.5 1 .o 

Figure 2. Sketch of the nonlinear component as a function of IEJ, of the relative per- 
meability of a turbulent and nonlinear plasma. The curve ( i )  represents the quadratic 
dependence of € 3  on ( E (  specified in (516); and (ii) the exponential dependence given 
in (14). 

in which 1 denotes the linear part ,  and n the nonlinear part. The components of the 
relative permitivity of a turbulent nonlinear plasma are shown schematically in figures 
1 and 2.  

Using (6)-(9), equation ( 5 )  becomes 

This is a nonlinear partial differential equation with stochastic coefficients. Clearly, 
c2 represents fluctuations in the plasma, c1  accounts for the deterministic spatial 
variation, and c3 expresses the nonlinearity. Since the inhomogeneity is weak, and the 
small angle forward scattering approximation is assumed valid, see figure 3,  we can 
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Figure 3. Schematic of wave propagation in a turbulent and nonlinear plasma when 
the small-angle forward scattering approximation is valid. (a)  is an example of linear 
scattering, ( b )  of nonlinear scattering and scattering centres are indicated by irregular 
closed surfaces. Note that the scattering centres are more extensive in the z and y 
directions than along z ,  as is required by the forward scattering approximation to be 
valid. 

use the paraxial approximation. Let 

E ( T , w )  = u(p ,  z,w)exp(ikz) ( 1 1 )  

where T = ( p ,  z ) ,  p is the two-dimensional radius vector. Putting this into equation 
(10) and assuming tha t  u(p ,  z , w )  does not change significantly along z we have the  
following nonlinear stochastic differential equation for U: 

where 0: is the twedimensional Laplacian operator. The  equation can also be written 
as 

where the operator A i  is defined as 

The  nonlinearity of the dielectric constant c3 is dependent on the strength of the elec- 
tric field. If it  has a quadratic dependance, equation (126) becomes a cubic Schrodinger 
equation. However if c3 is of more complex form e.g. 

where is a small constant and a is a normalising constant, then equation (126) 
becomes an exponential nonlinear Schrodinger equation. We shall discuss the problems 
of different types of nonlinearity below. 
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2.2. The functional differential equation for the characteristic functional of the wave 

The characteristic functional of the wavefield can be defined as 

Q ( z ,  v, v*) = (exp (i / [ U ( P ,  2 ,  k ) v ( p ,  E )  + ~ ' ( p ,  2 ,  k ) v ' ( p ,  k)]dpdk 

Z S Wang and D A Bryant 

(exp(iR)) 

(15) 
1) 

where * denotes complex conjugation, and the range of integration is over all allowed 
values of p and k. The U and U* here are independent functions of p and k. By 
differentiating (15) with respect to z ,  we obtain 

1 i 
-U* -A:u* + -kcZ(Tlu)u* + -kc3u* [ i k  2 2 

From (15), we have also the following functional derivatives: 

64 i(uexp(iR)) = - 
6U 

and 

Operating with A: on (17a) and (17b), we have 

1 64 (A:uexp(iR)) = TA2 - 
1 I 6 v  

and 

1 64 (A",* exp(iR)) = 7 A 2  -. 
1 l b v *  

To deal with other terms of equation (16), we define following functional 

g(v, U*, 21 P ,  k )  = (exp(iR)P(z, PI)  

where we let 

$ i k c 2 ( T , u )  + i ikc3(u ,  IEI) P ( z ,  p ,  k) .  

By expanding exp(iR), we can write (19) as follows 

g ( 4  v*1*, P ,  I C )  
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where U ,  = ( p , , k , ) , v ,  = ~ ( a , ) ,  U, = u(z,u,) etc for m = 1 , 2 , 3 , .  In this we 
have assumed that moments of all order exist. From equation (12a), U ( Z , U )  can be 
written as 

U(Z, U )  = u ( O , U )  + -A:u(z’, U )  + P(z ’ ,  U).  dz’. 1’ [;k 1 
For a Markov process U ( Z ,  U )  does not depend on p(z’, U )  if z’ > z .  If we denote Az 
as the increment of z ,  assumed larger than the correlation scale of P ( z , a )  in the z 
direction. We then have 

1 U ( Z ,  U )  = U ( Z  - Az,  U )  + 1’ dz’ [ ~ A ; U ( Z ’ ,  U )  + P ( z ’ ,  u)u(z ‘ ,  U )  
Z - A z  2k  

If AZ is small, we can write U ( Z ,  U )  as 

For AZ -+ 0. we have 

lim U(Z - Az,  U )  = U ( Z ,  U )  
A 2 4 0  

and 

(23) 

In deriving the above equation, we have assumed that c2 and c3 are statistically 
independent. If c3 can be expressed as 

where €30 is a small quantity and F ( w ,  1 . 1 )  is an analytical function, we can write 
equation ( 2 6 )  as 

= A ( u  - U ’ )  + o ( E ~ ~ )  E A ( u  - U ’ )  ( 2 8 )  

i.e. 

( p ( t ,  u ) ~ ( z ’ ,  U ’ ) )  = 6 ( ~  - z ’ )A(u  - U’ )  (29) 
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and 

( p ( t ,  c ) P ( t ' ,  0'))dZ' 

Note that,  for convenience and to retain generality, we do not give an explicit form 
for A ( a ) .  For higher moments 

= ( ~ ( 2 ,  a) 1' P ( Z ,  Cl )da l  . * * ~ ( 2 ,  a i ) d a i  ) 
We will assume, as in the usual derivation of the Fokker-Plank equation, that 

i 2 2. (31) 
2-A2 

lim Ti = 0 
At-0 

i 2 2 .  

From equations (22), (23), (24), (29) and (31) we have following when AZ i 0 

( ~ ( 2 ,  a ) P ( t ,  a)) = ( u ( z ,  a ) ) A ( a  - a') + $,ik(c3u) 
(U*(%, a ) P ( z ,  a)) = - (u * (z ,  a ) ) A ( a  - a') - iik(c3u*) 

(33) 

(34) 

and in general 

m .  

x (uj+lvj+l  + uj*+lvjttl)... (umv, + U',.&)). 
By substituting (35) into (21), we have 

g(v,  v*, t, a)  = A ( a  - a') [v(uexp(iR)) - v*(u* exp(iR))] da '  J 
+ [v(c3(u, IEI)uexp(iR)) - v*(c3(u, IEI)u* exp(iR))] da '  (36) 

and putting equations (17a) and (17b) into the above, we have 

g(v,  U*, t, a)  = -i A ( a  - a') J 
[v(c3uexp(iR)) - v*(c3u* exp(iR))] d a ' .  

We now define an operator p ( a )  as follows: 

(37) 

(38) 
6 6 

dv 6v* P(a) = v(a) -  - v*(u)-. 
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Using this, equation (37) can be written as 

g(v, v*, z ,  a) = -i A(@ - a’)i)Q(z,  v, v*)da’ [ 
+ IC [v(c,uexp(iR)) - v*(c3u* exp(iR))]da’. J 

We also have 

and 

(39) 

Now, using (18a),  (18b) and (37), it is quite straightforward to rewrite (16) as 

” ) - J d a  J da’A(a - a’)P(a)i)(a’)\k - 6\Ir = :-dui ( ,Ai- 6Q - -*A2 - 

2 ; /  J 
6 2  6v 6v* 

-+- - d a  d a ‘ t  [v(c3u exp(iR)) - v*(c3u* exp(iR))] . 

This is the differential equation for the characteristic functional \E of the random 
electromagnetic field U(%, p) in a random and nonlinear medium, where A ( a  - a’) and 
c, depend on the properties of the medium. The first term on the right-hand side of 
equation (42) is due to diffraction and refraction, the second term on the right-hand 
side is due to  scattering by random fluctuations in the medium and the third term on 
the right-hand side is due to the nonlinearity of the medium. The differential-integral 
functional equation (42) includes all the information about the propagation of the 
wave. There is not, however, a general method of solving such equation directly. We 
shall approach a solution, therefore, via the hierarchy of coupled moment equations. 

2.9. The hierarchy of moment equations 

We have derived the differential equation (42) for the characteristic functional of the 
wavefield. We can now delineate the hierarchy of the moment equations. To achieve 
this we expand Q ( z ,  v, v*) as earlier (e.g. (15)) 

This may be written for convenience as 
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where 
m n 

Mmn(z, v, v*) = J rmn(z ,  u l ,  . . . ,am,  U;, . . .,a;) JJ v j d a j  n v ; d a f  
j = 1  1=1 

(44) 

and 

r m n ( Z ,  el, .  . . , c,, U;, . . . , ) = ( u l , .  . ., U,.;, . . .,U;). (45) 

For any arbitrary function f(a) of U ,  it can readily be shown that  the following 
relations hold: 

So from (44), using (46a), (46b) and (38), we have 

J J A(- - a')~(a)i)(u'>~~,(t., v, v * ) d a d a '  
. r m  m m n  

We also have 

and 

Using equations (43), (47), (48a) and (48b) the differential-integral functional equation 
(42) can be written as 
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x n u jdu j  v;dal } = 0. (49) 
j = 1  1=1 I 

Since ~ ( u ) ,  v*(u') are arbitrary, the quantity inside the  curly brackets in equation 
(49) must be zero. Therefore we get the following differential-integral equation for 
the moment of the wavefield: 

m n  n n  
- 

C [ A ( u j  - U{) + A(ui  - uj)] + A(a;  - u;)}rmn 
j = 1  1=1 j=1  1=1 

For convenience we shall write 

We note tha t  from (50) we recover equation (19a) in [15], if the nonlinearity is specified 
in the same way as in [15]. As we have pointed out earlier, the wave will be modulated 
in space and  time when it propagates in a turbulent and nonlinear medium, creating 
new components with new frequencies and new wavevectors. I t  is desirable therefore to 
know the  moments of the wavefield as a function of wavenumber and the  position. To 
this end we can derive an  hierarchy of coupled partial differential equations containing 
different wavenumbers. If the nonlinearity is as follows 

where c3,, is a small constant, E, the total wavefield resulting from the full range of 
wavenumbers, can now be more generally expressed as 

P 

E = up exp(ikpt) 
p= 1 
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where up are all the components of the wave with different wavenumbers. P is the 
number of all possible components of the wave. We then have, for the case (51b), the 
following hierarchy of coupled partial differential equations for the moments: 

where 

When, on the other hand, the nonlinearity of the random medium has an exponential 
form, as described by equation (14), for cy = 1 

we arrive at  the following hierarchy: 

where 

It is clear that all the sets of equations (52) and (53) form chains. They cannot 
be solved for rmn as they stand, since l?(m+l)(n+l), l?(m+z)(n+2) etc are unknown. 
Additional information is required before the chains can be established. We shall 
discuss this in the following section. 
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3. An approximate method for solving the hierarchy of the moment equa- 
tions 

There is at present no exact solution for the hierarchy of the moment equations. 
However, an approximate solution can be found if additional information can be in- 
troduced, as we now demonstrate by showing how equation (52) can be solved using 
a perturbation method. 

In deriving the  hierarchies (52) and (53), we have assumed tha t  the  nonlinearity is 
weak. In which case we treat  which €30 << c o l  as a small parameter,  and assume 
tha t  rmn can be considered as perturbation series, i.e. 

where 
and equating the terms containing the same order of c g O ,  we have 

is the rth-order term of the wave moment. By substituting (54) into (52) 

. . .  

n / P  \ l  

We recognise as the linear part of T m n ,  and l?;; are all the nonlinear parts for 
r 2 1. The  hierarchy of coupled partial differential equations has then been decoupled, 
allowing the  solution to be found. Using the solutions found earlier for equation (55) 
[7-91, we have the moment of wave at a point 

05 

rgA(zi PI 3 ' 1  P m ,  P; ' 3  P L )  = C r$n)(~V PI 9 '3 Pm,  P : ,  ' ,  P L )  (57) 
p = o  

where 
m t n  

rz:(zi P11.1 P m ,  Pi , ' >  d n )  = (-1)m (1;;;) 



2092 Z S Wang and D A Bryant 

and 

for p 2 1 

and from the initial condition 
m n 

Then the solution of equation (56) is as follows: 

where 

(63) for p 2 1 

and the 17:kyj)(n+l)(ij,l &) is defined as in (52) but a t  positions having two-dimensional 
radii as PjI Pi etc. Therefore we can obtain the solutions for equations (55), (56) by 
starting with the solution of the linear m-nth moment equation to get the high order 
terms of the solution. 
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4. Summary and discussion 

We have derived the functional equation (42) for the characteristic functional of the 
wavefield, for an initially monochromatic wave propagating through a turbulent and 
nonlinear plasma. I t  conveys all the information about the wave. However, there are 
a t  present no general methods of solving equations in functional derivatives. Therefore 
we have developed a technique to  derive a hierarchy of equations for the moments of 
the wavefield. I t  is general and does not assume any particular form of the random 
distribution. We have examined two cases of nonlinearity; one quadratic and one 
exponential for cO(E) .  It is well known that  the quadratic nonlinearity for c o l  leading 
t o  cubic nonlinear equation, is equivalent to the four-wave resonant interaction process; 
and the exponential nonlinearity includes all wave resonant interactions [16]. The  
hierarchy of moment equations was solved using a perturbation method. 

It is worth noting that the structure of the hierarchy of the coupled moment 
equations of a wave in a turbulent and nonlinear medium is similar to  the structure 
of the hierarchy of the Vlasov cumulent for weak turbulence [20], and to  the BBGKY 
hierarchy of equations in statistical mechanics [21]. This actually shows that  there 
are features shared by different stochastic processes. This point will be pursued in a 
future work. 

There are various applications. The first moment of the wave describes the average 
evolution of a nonlinear wave propagating in a turbulent plasma. The second moment 
of the wave a t  the same point yields the spatial variation in intensity. The  fourth 
moment could be used to  study scintillation in a turbulent and nonlinear plasma. The  
moments can also be contructed to study pulse broadening in time and in space, and 
time delays between signals, etc [8]. 

We conclude with an example outlining one way in which our results could be used. 
For this we consider the important problem of long distance propagation of laser ra- 
diation in turbulent space plasmas. It is well known that when a strong enough 
electromagnetic wave propagates in a plasma, it produces density perturbations and 
excites low-frequency waves, the Stokes electromagnetic wave and the anti-Stokes elec- 
tromagnetic wave [22]. The nonlinear process is one of four-wave nonlinear coupling 
and can be described by the cubic nonlinear equation. For this we have to  assess 
the combined effects of plasma turbulence and the nonlinear interaction of the light 
with the plasma. The  spatial broadening of a beam due to  turbulence can reduce 
the self-induced effects of waves; and, in turn,  nonlinearities in the medium can alter 
the nature of the interaction between the beam and turbulent inhomogeneities, as a 
result both of the formation of a wave-guiding channel in the medium and due to  the 
randomisation of the medium in the field of a randomly modulated large-amplitude 
wave. T o  evaluate the broadening of a beam, we need to  evaluate the mean square 
beam radius ( p 2 ) ,  defined as [23]: 

Once rll is known we can readily calculate ( p 2 ) .  We shall assume that  the initial field 
distribution has a Gaussian form 
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representing a beam with an initial characteristic diameter D and radius of curvature 
F .  For this distribution the initial rll(z = 0 ,  p,  p') is, from (60) 

If the refractive index irregularities in the medium are isotropic and have a Gaus- 
sian autocorrelation function, the transverse autocorrelation function is 

where L is the characteristic length of the turbulence. 
Therefore we have 

The second moment is composed of the parts due to  linear effects and nonlinear 
effects. The part due to  linear effects is given by (57). It can be written as 

m 

p=o 

By putting (66) in (58) and (68) in (59), we have 

and 

The  part of the second moment due to  nonlinear effects can be obtained from (61). 
For this example we neglect moments higher than fourth order, cutting off the chain 
there. The first-order nonlinear contribution to  the second moment can be written, 
from (61), as 

m 

p=o  
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Similarly, r%)(plq) in (73) can be found using (57), (58) and (59), to be 

p=o  

where 

and 

(77) for p 2 1. 

The initial r22 and F22,  from (60) and (51), are as follows: 
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and 

Having thus specified Fill Fzz1  rl1(O, p i ) ,  l?22(0 ,P1,  &,&, 6;) for a particular 
problem we have demonstrated the method of finding the beam radius ( p 2 )  from (64) 
for a wave of interest. For the numerical calculation of the high dimensional integrals, 
i t  is necessary to  use some results of modern number theory. Such computations are 
currently under consideration. 
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